

Scientific Visualization 101 Image Segmentation and 3D Analysis

KAUST Visualization Core Lab Ronell Sicat

King Abdullah University of Science and Technology

This workshop is being live-streamed and recorded.

What are you interested in learning today?

- I am interested in learning foundational techniques of **image** segmentation and **3D analysis**
- To create meaningful and accurate **visual representations** of complex datasets, enhancing the ability to communicate findings.
- The basic of using **Avizo**, **measuring** dimensions, and **transform** a Avizo file to a CAD file (if possible)
- Segment CT scans and MRI to obtain real data **3D models**
- How to analyze and segment **biological images**
- How to segment and analyse pores space from a rock
- Image segmentation using **Deep Learning** and Machine Learning data analysis.

How can I use Avizo to visualize process segment analyze transform

my data?

Overview

Avizo 2024.1

KAUST **V**isualization Core **L**ab (KVL) Introduction

12 CORE LABS

270 HEADCOUNT

45 FIELDS OF EXPERTISE

MANAGEMENT AND CENTRAL OPERATIONS 29 Staff

ANALYTICAL CHEMISTRY 21 Staff

IMAGING AND CHARACTERIZATION 26 Staff

ANIMAL RESOURCES

BIOSCIENCE 25 Staff

COASTAL AND MARINE RESOURCES 50 Staff

LAB EQUIPMENT MAINTENANCE 27 Staff

NANOFABRICATION 19 Staff

RADIATION LABELING 1 Staff

PLANT GROWTH

SUPERCOMPUTING 18 Staff

PROTOTYPING AND PRODUCT DEVELOPMENT

KVL provides expertise in data visualization and analysis and data science

Dr. Sohaib Ghani (LEAD STAFF SCIENTIST)

VISUAL ANALYTICS
 INFORMATION VIS
 STATISTICAL ANALYSIS

	-	Ronell Sicat			Cited by	VIEWAL	RESEARCH ARTICLE
A		Visualization Scientist @ Visualization Core Lab, King Abdullah University of Sci	ence	- TOLLOVING		Since 2010	
	ta	and Technology Verified email at kaust.edu.sa - <u>Homepage</u> Scientific Visualization Large-scale Images and Vc Augmented/Virtual Rec	ality Segr	nentation	Citations 624 h-index 7 i10-index 6	534 6 5	Advancing Membrane Technolog ZIF-67 as a Filler in Mixed Matri Propylene (Propage Separation
	TITLE 📴	1	CITED BY	YEAR		120	Propylelle/Propalle Separation
	A novel multi-s production V Chandra, R Sica Geoscience Front	cale µCT characterization method to quantify biogenic carbonate at, F. Benzoni, V. Vahrenkamp, V. Bracchi ers 15 (6), 101883		2024		90	Daria Poloneeva, Shuvo Jit Datta, Ronell Sicat, Anastasiya Bavykina, Mohamed Eddaoudi,* ana
	Advancing Mer Matrix Membra D Poloneeva, SJ I Small, 2309127	mbrane Technology: Ordered Macroporous ZIF-67 as a Filler in Mixed anes for Enhanced Propylene/Propane Separation Datta, R Sicat, R Knairova, L Garzon-Tovar, A Bavykina,	1	2024	2017 2018 2019 2020 2021 2022	30 2023 2024 0	C C
	Natural variation regulator of root MR Ishka, H Suss bioRxiv, 2024.04.	on in salt-induced changes in root: shoot ratio reveals SR3G as a negative of suberization and salt resilience in Arabidopsis man, Y Hu, MD Alqahtani, E Craft, R Sicat, M Wang, 09 588564		2024	Public access 0 articles	VIEW ALL 3 articles	
	Multivariate Pro A Ageeli, A Jaspe- IEEE Transactions	obabilistic Range Queries for Scalable Interactive 3D Visualization Villanueva, R Sicat, F Mannuss, P Rautek, M Hadwiger s on Visualization and Computer Graphics 29 (1), 646-656	1	2022	not available Based on funding mandates	available	
	Real-Time Visu Preserving Lev R Sicat, M Ibrahim IEEE Transactions	ualization of Large-Scale Geological Models With Nonlinear Feature- rels of Detail , AAgeeli, F Mannuss, P Rautek, M Hadwiger on Visualization and Computer Graphics 29 (2), 1491-1505	2	2021	Co-authors	EDIT	
	Virtual reality for nanometric sca D Boges, M Agus, Computers & Gray	amework for editing and exploring medial axis representations of le neural structures R Sicat, PJ Magistretti, M Hadwiger, C Call hirs 91, 12-24	11	2020	Markus Hadwiger Professor of Computer S	Science, >	<u>006</u>
	Virtual environ reconstructions D Boges, C Cali', Proceedings of the	ment for processing medial axis representations of 3D nanoscale s of brain cellular structures PJ Magistretti, M Hadwiger, R Sicat, M Agus 25th ACM Symposium on Virtual Reality Software and	2	2019	5-5242	Contents	lists available at ScienceDirect science Frontiers
	Immersive env scale neural st D Boges, C Cali, F Eurographics Asse	ironment for creating, proofreading, and exploring skeletons of nanometric ructures PJ Magistretti, M Hadwiger, RB Sicat, M Agus citation	3	2019	ELSEVIER	journal homep	age: www.elsevier.com/locate/gsf
	DXR: A toolkit R Sicat, J Li, J Ch IEEE transactions	for building immersive data visualizations ol, M.Cordeil, WK Jeong, B.Bach, H.Pfister on visualization and computer graphics 25 (1), 715-725	201	2018	A novel multi-scale	e μCT characteri	zation method to quantify biogenic
	Drawing into the B Bach, R Sicat, H Workshop on Imm	e AR-CANVAS: Designing embedded visualizations for augmented reality I Pfister, A Quigley ersive Analytics, IEEE Vis 4	51	2017	V. Chandra ^{a,e,*} , R. Sicat ^b	on ^o , F. Benzoni ^c , V. Val	renkamp ^a , V. Bracchi ^d
	The hologram immersive tang B Bach, R Sicat, J IEEE transactions	in my hand: How effective is interactive exploration of 3D visualizations in jible augmented reality? Beyer, M Cordel, H Pister on visualization and computer graphics 24 (1), 457-467	270	2017	^a Physical Sciences and Engineering, King ^b Visualization Core Lab, King Abdullah U ^c Biological and Environmental Science and ^d Department of Earth and Environmenta ^e Saudi Aramco, Dhahran, Saudi Arabia	Abdullah University of Science an iniversity of Science and Technolog ad Engineering, King Abdullah Uni I Sciences, Univ	I Technology, Thurod, Saudi Arabia y Thurod, Saudi Arabia aretiv al Crience and Technolouv Thumad Sandi Arabia
	Comparative V Heterojunction A Aboulhassan, R Computer Graphic	fisual Analysis of Structure-Performance Relations in Complex Bulk- Morphologies Sicat, D Baum, O Wodo, M Hadwiger s Forum 36 (3), 329-339	7	2017	ARTICLE INFO		
	Large-Scale M Operations RB Sicat	ulti-Resolution Representations for Accurate Interactive Image and Volume		2015	Received 25 September 2023 Revised 30 April 2024 Accepted 23 June 2024 Available online 27 June 2024 Handline Editor: C. Manikvamba	0.5 cm -	
	Sparse PDF V R Sicat, J Krueger IEEE	olumes for Consistent Multi-Resolution Volume Rendering , T. Moeller, M. Hadwiger	39	2014	Keywords:		Voids [F 3 cm
					Crustose coralline algae Foraminifera	RCT greyscale cros	s-section (A) and its corresponding labelled image (B) segmented into voids, sediments, EF and CCA. (6 5 FF and CCA from the ground-truth segmentation method applied to the sub-volume HPCT image of the

www.small-journal.com Ordered Macroporous lembranes for Enhanced ana Khairova, Luis Garzon-Tovar, Gascon* е Q I-ZIF-67 particles at low magnification. c) Surface-rendered ne. e) Surface-rendered parts of OM-ZIF-67: pore aperture f OM-ZIF-67 particle: g) missing pillar and h) missing pore. SEM images.

ages of this type of membrane, e.g. modification of a make it more similar to a polymer to increase the affinfunctionalization to improve compatibility,[4] and parhology modification, such nanoparticles^[5] 2D sheets,^[6] ticles,^[7] etc.

tional challenge, the lack of processability in the manf these composite membranes, was recently overcome sing MOFs through a porous liquid (PL) state.^[8] We

I. Eddaoudi Materials Design Discovery and Development (FMD3) Membranes & Porous Materials Center (AMPMC) Physical Sciences and Engineering ah University of Science and Technology 55, Saudi Arabia amed.eddaoudi@kaust.edu.sa

ualization Core Lab (KVL) Iah University of Science and Technology 5. Saudi Arabia

© 2024 The Authors. Small published by Wiley-VCH GmbH

μCT

or yous, seaments, i.r. and CCX from the ground-truth segmentation method applied to the Sub-Volume HRCT image of the integrated just and stant image analyses reveared the main progenic carbonate components of this notate.

KVL offers state-of-the-art visualization facilities

ZONE 1/2 DISPLAY WALLS: 2D/3D Analytics

CUBES VR

AR/VR HMDs

wiki.vis.kaust.edu.sa help@vis.kaust.edu.sa

Schedule

- 10 mins: Overview
- 20 mins: Introduction to Avizo
- 10 mins: **Break**
- 40 mins: Basic Segmentation and Analysis
- 10 mins: Break
- 30 mins: Advanced Segmentation and Analysis

Introduction to Avizo

Important concepts

Demo: Sand - Avizo Basics on Project Window

- Orthoslice
- Volume Rendering
- Interactive Thresholding
- Filter Sandbox
- Median Filter
- Voxelized Rendering
- Separate Objects
- Label Analysis
- Export Table
- Screenshots
- Animations

Try it out!

Hint: filter sandbox, median filter, interactive thresholding, separate objects, label analysis

easy - pheres

intermediate - sand

advanced - foam

10-minute Break

wiki.vis.kaust.edu.sa help@vis.kaust.edu.sa

Data Download

https://wiki.vis.kaust.edu.sa/training/scivis/ 2024/segmentationintro

Basic Segmentation and Analysis

Try it out!

Hint: filter sandbox, median filter, interactive thresholding, separate objects, label analysis

easy - pheres

intermediate - sand

advanced - foam

Hands-on: CT of Coral (measure, surface area, conversion to 3D model)

data c/o Eleonora Re and Domingo Sanchez

Hands-on: CT of **basalt** core (pore network analysis)

Hands-on: CT of **basalt** core (pore reduction)

10-minute Break

wiki.vis.kaust.edu.sa help@vis.kaust.edu.sa

KVL wiki

Advanced Segmentation and Analysis

Demo: Sand - Segmentation Workroom

- Set input data (filtered)
- Create new label
- Create new materials
- Create and add selections to material:
 - Using brush
 - \circ Using threshold tool

Important AI concepts

We can use **deep learning models** for segmentation.

Demo: Zeolite - Segmentation Workroom

- Set input data
- Create new label
- Create new materials
- Add selections to material using brush
- Create new patch set
- Add patches for fore/background
- Create/add selection using AI tool
- Tweak parameters and iterate

data c/o Georgian Melinte (<u>Parsapur et. al, 2023</u>)

Hands-on: CryoEM - Segmentation Workroom

See CryoEM folder in datasets. Input data is CryoEM/CryoEM_Segmentation-files/emd_8594.to-ushort00.tif.

https://xtras.amira-avizo.com/xtras/ai-assisted-tool-for-cryoem-segmentation

Workflow recommendation

- Inspect data (orthoslice, volume rendering, histogram)
- Filter data to denoise or improve features:
 - Median filter, Bilateral filter, Non-local means filter, Unsharp Masking
- Try simple segmentation tools in Avizo:
 - Thresholding, Watershed, Texture Classification
- Try Al segmentation in Avizo
- Try AI segmentation in ilastik
- Try Pixel Classification in ilastik
- Try Deep Learning Training/Prediction in Avizo
- Try other tools
- Worst case: manual segmentation
- Not sure? Contact **help@vis.kaust.edu.sa**.

Deep Learning Training/Prediction in Avizo

	Search Help: deep learning
Automating, Customizing, Extending Getting sta	arted with Deep Learning Training and
Getting started with Deep Learning Trai	ning and Prediction
Overview	
Among machine learning methods, deep learning has proved to set of input images and the corresponding target results, su automatically from previously unseen images.	o be especially valuable in many image processing tasks. Deep learning models can be trained fron cch as manual segmentations reviewed by an expert. They can then be applied to predict resu
This tutorial introduces two modules, Deep Learning Prediction processing. A model trained to perform noise reduction on Scan	on and DL Training - Segmentation 2D, that allow any user to start using deep learning for ima ning Electron Microscopy images of Back-Scattered Electrons (SEM/BSE) is also provided.
This tutorial introduces two modules, Deep Learning Predictik processing. A model trained to perform noise reduction on Scan Table of contents	on and DL Training - Segmentation 2D, that allow any user to start using deep learning for ima ning Electron Microscopy images of Back-Scattered Electrons (SEM/BSE) is also provided.
This tutorial introduces two modules, Deep Learning Predictic processing. A model trained to perform noise reduction on Scan Table of contents • How deep learning can help you in Avizo	on and DL Training - Segmentation 20, that allow any user to start using deep learning for ima ning Electron Microscopy images of Back-Scattered Electrons (SEMBSE) is also provided.
This turbrial introduces two modules, Deep Learning Predictik processing, A model trained to perform noise reduction on Scan Table of contents How deep learning can help you in Avizo Basic concepts of deep learning	on and DL Training - Segmentation 2D, that allow any user to start using deep learning for ima ning Electron Microscopy images of Back-Scattered Electrons (SEMBSE) is also provided.
This tutorial introduces two modules. Deep Learning Predicti processing. A model trained to perform noise reduction on Scan Table of contents - How deep learning can help you in Avizo - Basic concepts of deep learning - How to use the Deep Learning Prediction module, apple	on and DL Training - Seymentation 2D, that allow any user to start using deep learning for ima ning Electron Microscopy images of Back-Scattered Electrons (SEM/BSE) is also provided. ad to noise reduction

https://xtras.amira-avizo.com/xtras/getting-started-with-deep-learning-training

Other segmentation tools

- ilastik
- Fiji
- Matlab
- OpenCV
- TensorFlow
- PyTorch

Other segmentation tools

- ilastik
- Fiji
- Matlab
- OpenCV
- TensorFlow
- PyTorch

Manual segmentation

Book "Vive" facility at https://wiki.vis.kaust.edu.sa/booking.

Thank you!

wiki.vis.kaust.edu.sa help@vis.kaust.edu.sa

feedback form

How would you rate the overall quality of the workshop?*

Please share your comments! (Confidential and for KVL use only.)

e.g., "Content was too simple.", "Topics are very useful.", "Please add more examples."

End

Denoising using Deep Learning

https://xtras.amira-avizo.com/xtras/bse-sem-denoiser

Noise to Void